
Security and reverse
engineering: a prospective
vision
http://stephane.ducasse.free.fr
Stéphane Ducasse

1

http://rmod.lille.inria.fr

Me in a Nutshell: not a security
expert

Head of RMOD team (7 permanents, 20 people)
4 years scientific deputee of Inria Lille (300 people)

Wrote several open-source books / ~ 300 articles
~ 15 K citations / H-index~56
One of the leader of the Pharo community

- http://www.pharo.org
Past core dev of Moose data and code analysis platform

- http://moosetechnology.org
Co-founder of http://www.synectique.eu

http://www.pharo.org
http://moosetechnology.org
http://www.synectique.eu

Bottom up team: interested in problems
code analysis, metamodeling, software metrics, program
understanding, program visualization, reverse engineering,
evolution analysis, refactorings, quality,
changes analysis, commit,
dependencies, merging support
rule and bug assessment
semi-automatic migration
example-based transformations
test selection, rearchitecturing
blockchains, ui-migration
Collaborations
 IMT Douai, Soft (VUB), ENSTA (Bretagne)
 Berger-Levrault, Siemens, Thales, CIM, Arolla, Lifeware, WordLine/ATOS

Representation Transformations

Reverse

Engineering

Analyses

Evolution

Roadmap

Legacy is not just Cobol
Software Maps
Dreaming about security

-

Software is

Complex

Laws of software evolution

Continuing change
• A program that is used in a real-world environment must
change, or become progressively less useful in that
environment.

Increasing complexity
• As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its
structure.

Software is a living entity...

• Early decisions were certainly good at that time
• But the context changes
• Customers change
• Technology changes
• People change

We only maintain
useful successful
software

Maintenance is continuous
Development

Between 70% and 90% of global
effort is spent on “maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

“Maintenance”

50% of development time
is lost trying to understand code !

We lose a lot of time with inappropriate and
ineffective practices

Between 50% and 80% of the
overall cost is spent in the

evolution

-

Legacy systems
exist in ***any***
language

Berger-Levrault by example

+150 produits Temps de
migration

Plusieurs
langages

Maintenabilité
sur plusieurs
décennies

Introducti
on

One case

Depuis GWT vers
Angular

500 pages web

36 ans/homme	
de migration

1 MLOCS	

21 433 classes	

95 164 méthodes

13

https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/

-

Some selected software
maps
— to build **yourselves**
at home

First glance at large systems:
Polymetric views [PhD Lanza]

Color
metric

Width metric

Height metric

Position metrics

Understanding systems [PhD M.
Lanza]

Understanding a single class [PhD
M. Lanza]

Initialize Interface Internal Accessor Attribute

Understanding classes [PhD M.
Lanza]

How a property spread on a
system?

Example : Who is behind package
X ?

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Step 1 - Model Creation/Import

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Definition of a model to represent entities
Data Extraction (CVS...)

Step 2 - Analyses

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Who wrote how many lines of code?

Step : 3 - Creating the Map

JBoss at a glance

	 Interactive tool
 Data in perspective

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

How to support understand
classnames? [PhD N.-J. Agouf]

• How class are named?
• is inheritance conveyed through names

• Is naming consistent?

How to support understand
classnames? [PhD N.-J. Agouf]

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y

How to support understand
classnames? [PhD N.-J. Agouf]

Suffix: Y

LEGEND:
Root
class C1Y

Class named *Y from
C hierarchy. suffix is : Y

Package: P1

suffix boxclass box

DY D1Y C1Y

C2Y D2Y

Suffix: X

C1X

C2X C3X

CX

Suffix: F

BF AZ

Suffix: Z

F3Z F4Z

F2Z

C3Y C4Y

Suffix: P

E2P

E3PE1P

EP

package box

F1Y

suffix box

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y

V6

V8

V9

-

What about security?

No solution yet but we are
interested …

by your wishes
by your ideas

 What are the maps you
 want to see?

- constructs maps
- “dangerous” expressions?

 What are the maps you
 want to see?

- input places?

 What are the maps you
 want to see?

- previous bugs?
- places not covered by test?
- buggy places covered by tests?

 What are the maps you
 want to see?

- domains?
- symbols used

Code as a database

What are the queries you would like to do to
spot problem?

What properties such query engine should
have?

Let us dream a bit more…

Can we have security aware refactorings?

Can I refactor a piece of code without breaking a
non-functional requirement?

- concurrency
- speed
- security

Ready to collaborate

Interested
• Software Maps for security
• ANR proposal around “qualisecure”
(we wrote one already)

• Security-aware refactoring
• And your problems

