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http://rmod.lille.inria.fr


Me in a Nutshell: not a security 
expert

Head of RMOD team (7 permanents, 20 people) 
4 years scientific deputee of Inria Lille (300 people) 

Wrote several open-source books / ~ 300 articles 
~ 15 K citations / H-index~56 
One of the leader of the Pharo community  

- http://www.pharo.org 
Past core dev of Moose data and code analysis platform 

- http://moosetechnology.org 
Co-founder of http://www.synectique.eu

http://www.pharo.org
http://moosetechnology.org
http://www.synectique.eu


Bottom up team: interested in problems
code analysis, metamodeling, software metrics, program 
understanding, program visualization, reverse engineering,  
evolution analysis, refactorings, quality,  
changes analysis, commit,  
dependencies, merging support 
rule and bug assessment  
semi-automatic migration 
example-based transformations 
test selection, rearchitecturing 
blockchains, ui-migration 
Collaborations 
    IMT Douai, Soft (VUB), ENSTA (Bretagne) 
    Berger-Levrault, Siemens, Thales, CIM, Arolla, Lifeware, WordLine/ATOS

Representation Transformations

Reverse

Engineering

Analyses

Evolution



Roadmap

Legacy is not just Cobol 
Software Maps 
Dreaming about security 



- 

Software is 

Complex



Laws of software evolution

Continuing change 
• A program that is used in a real-world environment must 
change, or become progressively less useful in that 
environment. 

Increasing complexity 
• As a program evolves, it becomes more complex, and 
extra resources are needed to preserve and simplify its 
structure. 



Software is a living entity...

• Early decisions were certainly good at that time 
• But the context changes 
• Customers change 
• Technology changes 
• People change



We only maintain 
useful successful 
software



Maintenance is continuous 
Development

Between 70% and 90% of global 
effort is spent on “maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

“Maintenance”



50% of development time  
is lost trying to understand code !

We lose a lot of time with inappropriate and 
ineffective practices

Between 50% and 80% of the 
overall cost is spent in the 

evolution
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Legacy systems 
exist in ***any*** 
language



Berger-Levrault by example

+150 produits Temps de 
migration

Plusieurs 
langages

Maintenabilité 
sur plusieurs 
décennies



Introducti
on

One case

Depuis GWT vers 
Angular 

500 pages web

36 ans/homme	
de migration

1 MLOCS	

21 433 classes	

95 164 méthodes
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https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
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Some selected software 
maps 
— to build **yourselves** 
at home



First glance at large systems: 
Polymetric views [PhD Lanza]

Color 
metric

Width metric

Height metric

Position metrics



Understanding systems [PhD M. 
Lanza]



Understanding a single class [PhD 
M. Lanza]

Initialize Interface Internal Accessor Attribute



Understanding classes [PhD M. 
Lanza]



How a property spread on a 
system?



Example : Who is behind package 
X ?

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses



Step 1 - Model Creation/Import

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Definition of a model to represent entities 
Data Extraction (CVS...)



Step 2 - Analyses

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Who wrote how many lines of code?



Step : 3 - Creating the Map



JBoss at a glance 

	 Interactive tool 
    Data in perspective 

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses



How to support understand 
classnames? [PhD N.-J. Agouf]

• How class are named? 
•  is inheritance conveyed through names 

• Is naming consistent?



How to support understand 
classnames? [PhD N.-J. Agouf]

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y
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C3Y
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E3PE1P E2P

C4Y

F1Y



How to support understand 
classnames? [PhD N.-J. Agouf]

Suffix: Y

LEGEND:
Root 
class C1Y

Class named *Y from 
C hierarchy. suffix is : Y

Package: P1

suffix boxclass box

DY D1Y C1Y

C2Y D2Y

Suffix: X

C1X

C2X C3X

CX

Suffix: F

BF AZ

Suffix: Z

F3Z F4Z

F2Z

C3Y C4Y

Suffix: P

E2P

E3PE1P

EP

package box

F1Y

suffix box

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y
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What about security?



No solution yet but we are 
interested …

by your wishes
by your ideas



 What are the maps you  
 want to see? 

- constructs maps 
- “dangerous” expressions? 



 What are the maps you  
 want to see? 

- input places? 



 What are the maps you  
 want to see? 

- previous bugs? 
- places not covered by test? 
- buggy places covered by tests? 



 What are the maps you  
 want to see? 

- domains? 
- symbols used 



Code as a database

What are the queries you would like to do to 
spot problem? 

What properties such query engine should 
have?



Let us dream a bit more…

Can we have security aware refactorings? 

Can I refactor a piece of code without breaking a 
non-functional requirement? 

- concurrency 
- speed 
- security



Ready to collaborate 

Interested 
• Software Maps for security 
• ANR proposal around “qualisecure” 
(we wrote one already) 

• Security-aware refactoring 
• And your problems


