
Interface Compliance of Inline Assembly:
Automatically Check, Patch and Refine

Frédéric Recoules Univ. Paris-Saclay, CEA, List

Sébastien Bardin Univ. Paris-Saclay, CEA, List
Richard Bonichon Tweag I/O
Matthieu Lemerre Univ. Paris-Saclay, CEA, List
Laurent Mounier Univ. Grenoble Alpes, VERIMAG
Marie-Laure Potet Univ. Grenoble Alpes, VERIMAG

International Conference on Software Engineering, 2021



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

1



Inline assembly is well spread

7k packages

Found 3107 x86 chunks
in 202 packages

Found 3107 x86 chunks
in 202 packages

786
11%

1264
projets

355
28%1

• full access to hardware
• hand-crafted optimization
• security / obfuscation

1according to Rigger et al., 2018
2

https://stefan-marr.de/downloads/vee18-rigger-et-al-an-analysis-of-x86-64-inline-assembly-in-c-programs.pdf


“GCC-style inline assembly is
notoriously

hard to write correctly”

Oliver Stannard,
ARM Senior Software Engineer on llvm threads, 2018

2



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

3



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

Assembly template

3



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

Assembly template

3



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

Assembly template

Output list

Input list
Clobber list

3



Inline assembly example in C code

AO_INLINE int
AO_compare_double_and_swap_double_full(volatile AO_double_t *addr,

AO_t old_val1, AO_t old_val2,
AO_t new_val1, AO_t new_val2)

{
char result;
[…]
__asm__ __volatile__("xchg %%ebx,%6;" /* swap GOT ptr and new_val1 */

"lock; cmpxchg8b %0; setz %1;"
"xchg %%ebx,%6;" /* restore ebx and edi */
: "=m"(*addr), "=a"(result)
: "m"(*addr), "d" (old_val2), "a" (old_val1),

"c" (new_val2), "D" (new_val1) : "memory");
[…]
return (int) result;

}

Assembly template

Output list

Input list
Clobber list

%edx

%ecx %edi

%eax

3



This code works fine prior to GCC 5.0,
then suddenly crashes with a

Segmentation fault

• compiler knowledge is limited to the interface
• register allocation and optimizations rely on it
• code-interface mismatches can lead to bugs

3



A few known inline assembly bugs 

• strcspn
glibc – Mars 1998 .. January 1999

• compare_double_and_swap_double
libatomic_ops – February 2008 .. Mars 2012

• compare_double_and_swap_double
libatomic_ops – Mars 2012 .. September 2012

• bswap
libtomcrypt – April 2005 .. November 2012

GNU-style interface is really error-prone

4



Today’s challenge :
Interface Compliance

Define – Check – Patch

4



Challenges

Define

must be built on a currently missing proper formalization
indeed there is not even a complete documentation..

Check, Patch & Refine

must be able to check whether an assembly chunk is compliant
ideally, should suggest a patch for the non compliant ones

Widely applicable

must be compiler & architecture agnostic

5



Our contributions (1/2)

A novel semantics and comprehensive formalization
• support GCC, Clang and mostly icc
• Framing condition & Unicity condition

A method to check, patch and refine the interface
• dataflow analysis + dedicated optimizations
• infer an over-approximation of the ideal interface

6



Our contributions (2/2)

Thorough experiments of our prototype

• 2.6k+ real-world assembly chunks (Debian)
• 2183 issues, including 986 severe issues
• 2000 patches, including 803 severe fixes
• 7 packages have already accepted the fixes

A study of current inline assembly bad coding practices

• 6 recurrent patterns yield 90% of issues
• 5 patterns rely on fragile assumptions

(80% of severe issues)
6

https://doi.org/10.5281/zenodo.4601172


GNU documentation is
informal & incomplete

• no standard, only based on GCC implementation
• non documented behaviors may change at any time
• Clang and icc follow “what they understood”

6



Looking for a formalism – reverse engineering

←−z %eax = %0
←−%eax %0
z←−%0 %3
←−%1 z

cmpxchgl %3, %0;
lock;

setz %1

“

”

C� : asm� C� : asm�

C� = JC�K�x86

extract

__asm__ volatile (

: "=m" (*addr),

"=q" (result)

: "m" (*addr),

"r" (new_val),

"a" (old)

: "memory"

);

GNU Syntax

BO = { (%0, *addr, indirect),

(%1, result, direct) }

BI = { (%0, *addr, indirect),

(%3, new_val, direct),

(%4, old, direct) }

F = false /* no memory separation */

SC = { } /* no clobber registers */

D(%0) = { *(%ebx), .. }

D(%1) = { %eax, %ebx, %ecx, %edx }

D(%3) = { %eax, %ebx, %ecx, %edx,

%esi, %edi, %ebp }

D(%4) = { %eax }

domainx86

ST = {

T1 = { %0 7→ *(%ebx), %1 7→ %eax,

%3 7→ %edx, %4 7→ %eax },

T2 = { %0 7→ *(%ebx), %1 7→ %ecx,

%3 7→ %ebp, %4 7→ %eax },

.. }

I� : interface

model

7



Interface compliance properties

Frame-write

. ∀l ̸∈ BO ∪ SC; S(l) = exec(S, Cι<T>)(l)

Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read

. exec(S1, Cι<T>)
♦∼=T

BO,F exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity

. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices

(Unicity implies Frame-read)

8



Interface compliance properties

Frame-write. ∀l ̸∈ BO ∪ SC; S(l) = exec(S, Cι<T>)(l)
Only clobber registers and output location are allowed to be modified
by the assembly template

Frame-read. exec(S1, Cι<T>)
♦∼=T

BO,F exec(S2, Cι<T>)

All read values must be initialized – only input dependent values are
allowed in output productions, memory addressing and branching
condition

Unicity. exec(S1, Cι<T1>)
♦∼=T1,T2

BO,F exec(S2, Cι<T2>)

The instruction behavior must not depend on the compiler choices
(Unicity implies Frame-read)

8



Checking the compliance

Dedicated dataflow analysis

Frame-write. Collect all the left hand side expressions.

Frame-read. Liveness analysis – collect all the living dependencies of
right hand side expression.

Unicity. Check that no living location (tokens or registers) may be
impacted by the side effect of another location write.

with precision enhancers: expression propagation + bit level liveness

9



Our prototype RUSTInA

GNU template

GNU interface
+C

Template C⋄

Interface I⋄

Asm Cα

+
Instantiate

gas IR Cι

+
Semantics

IR C♦

D
ifferential

analysis

Interface I⋄CheckPatch
Infer

Dataflow









11



Experimental evaluation of RUSTInA

□ How does RUSTInA perform at checking and patching?

□ Why do so many issues not turn more often into bugs?

□ What is the real impact of the reported issues?

□ What is the impact of the design choices?

11



Checking and patching statistics

Initial Patched
code code

Found issues 2183 183
significant issues 986 183

frame-write 1718 0
 – flag register clobbered 1197 0
 – read-only input clobbered 17 0
 – unbound register clobbered 436 0
 – unbound memory access 68 0

frame-read 379 183
 – non written write-only output 19 0
 – unbound register read 183 183
 – unbound memory access 177 0

unicity 86 0

Total time: 2min – Average time per chunk: 40ms

Over 2656 chunks

49%

fully compliant

Initial

40%

benign issues

11%
serious issues

97%

3%
Patched

Over 202 packages

58%
fully compliant

Initial

15%

benign issues

27%

serious issues

88%

12%
Patched

12



Common issues (90%)
do not break very often

Why is that?

What if we stress out the
compilation process?

12



Common bad coding practices

6 recurrent patterns yield 90% of issues
5 of them can lead to bugs

Pattern Omitted clobber Implicit protection Robust? # issues

P1 – "cc" compiler choice  1197

P2 – %ebx register compiler choice  (GCC ≥ 5) +  30
P3 – %esp register compiler choice  (GCC ≥ 4.6) +  5
P4 – "memory" function embedding  (inlining, cloning) +  285
P5 – MMX register ABI  (inlining, cloning) 363
P6 – XMM register compiler option  (cloning) 109

792 80%

 : does not break –  : has been broken –  : known bug

13



Real-life impact of RUSTInA

Submitted patches
• 114 faulty chunks in 8 packages (7 applied)

• 538 severe issues

x264

ALSA

haproxy

libtomcrypt

libatomic_ops

xfstt

UDPCast

14



• Have a look @ the paper
• Have a look @ the artifact
• Have a look @

Interface compliance is hard,
it matters but it is no longer a problem

thanks to RUSTInA

If you have any question,
do not hesitate!

https://binsec.github.io/frederic.recoules@cea.fr 14

https://conf.researchr.org/details/icse-2021/icse-2021-papers/82/Interface-Compliance-of-Inline-Assembly-Automatically-Check-Patch-and-Refine
https://binsec.github.io/new/publication/1970/01/01/nutshell-icse-21.html
https://binsec.github.io/
mailto:frederic.recoules@cea.fr


Panorama of existing works

Binary lifter Interface checker

Vx861 Inception2 TInA3 Goanna4 RUSTInA

Frame check × × ✓ ✓ ✓

Unicity check × × × × ✓

Interface patch × × × × ✓

Widely applicable × ✓ ✓ × ✓

1Schulte et al. Vx86: x86 Assembler Simulated in C Powered by Automated Theorem Proving
2Corteggiani et al. Inception: System-Wide Security Testing of Real-World Embedded Systems Software
3Recoules et al. Get Rid of Inline Assembly through Verification-Oriented Lifting
4Fehnker et al. Some Assembly Required - Program Analysis of Embedded System Code

15

https://www.microsoft.com/en-us/research/publication/vx86-x86-assembler-simulated-in-c-powered-by-automated-theorem-proving/
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://ieeexplore.ieee.org/document/8952223
https://www.researchgate.net/publication/220703668_Some_Assembly_Required_-_Program_Analysis_of_Embedded_System_Code


Real-life impact (detailed)

Patched Fixed
Project About Status chunks issues Commit

ALSA Multimedia Applied 20 64/64 01d8a6e, 0fd7f0c
haproxy Network Applied 1 1/1 09568fd
libatomic_ops Multi-threading Applied 1 1/1 05812c2
libtomcrypt Cryptography Applied 2 2/2 cefff85
UDPCast Network Applied 2 2/2 20200328
xfstt X Server Applied 1 3/3 91c358e
x264 Multimedia Applied 11 83/83 69771
ffmpeg Multimedia Review 76 382/382

114 538 (55% of severe issues)

16

https://github.com/alsa-project/alsa-lib/commit/01d8a6e03a4c1055e5c0ef6d5b6cfdadce545007
https://github.com/alsa-project/alsa-lib/commit/0fd7f0cdc5e663e69486d17b0207434396620be6
https://github.com/haproxy/haproxy/commit/09568fd54d2f091860cafa5173893445cd55c44c
https://github.com/ivmai/libatomic_ops/commit/d728ce4e2be5c8328f0af8fc738622915c520aee
https://github.com/libtom/libtomcrypt/commit/cefff85550786ec869b39c0cb4a5904e88c84319
http://www.udpcast.linux.lu/changes.html
https://github.com/guillemj/xfstt/commit/91c358eeb4380e8235c66fa15456a039ff869509
https://code.videolan.org/videolan/x264/-/merge_requests/36

