Asset-Oriented Threat Modeling (TrustCom 2020)

Improve the threat modeling process to provide a security assistance to architects during system design

 $\frac{\text{Nan MESSE}}{\text{El-Hachem}} \, ^{1} \quad \text{Vanea Chiprianov} \, ^{2} \quad \text{Nicolas Belloir} \, ^{2}$

¹Université Toulouse - Jean Jaurès / SM@RT, IRIT, Toulouse ²Université Bretagne Sud / ArchWare, IRISA, Vannes

7 novembre 2021

Proof-of-concept

Plan

Problem statement

Problem Statement

 Threat enumeration is ofen hold in brainstorming meetings, which is a subjective and unstructured activity

Problem statement

 Threat enumeration is ofen hold in brainstorming meetings, which is a subjective and unstructured activity

Problem statement

 Threat enumeration is ofen hold in brainstorming meetings, which is a subjective and unstructured activity

 The current threat modeling processes require a certain security knowledge level, making it a non-trivial task for participants with limited security knowledge

Requirements

1. There is a need of a guidance in brainstorming that is more prescriptive, formal, reusable and less dependent on the aptitudes and knowledge of the participants

Requirement

- 1. There is a need of a guidance in brainstorming that is more prescriptive, formal, reusable and less dependent on the aptitudes and knowledge of the participants
- 2. There is thus a need to propose a method that can be easily used or understandable by security novices

1. There is a need of a guidance in brainstorming that is more

- prescriptive, formal, reusable and less dependent on the aptitudes and knowledge of the participants

 There is thus a pead to propose a method that can be easily used on the second control of the contr
- 2. There is thus a need to propose a method that can be easily used or understandable by security novices
- 3. There is a need of a common language or a common concept that can be understood by all participants.

An inventory of industrial threat modeling processes

Phase	Asset Identification			Threat Enumeration					t Prioritization	Mitigation	
Paper	Identify security goal	Model domain	Identify asset	Identify threat	Enumerate &document threat	Describe attacker		Rate	Assess risk	Mitigation	Verification
Torr (2005) [15]		Х		Х			,			Х	X
Shostack (2008) [12]		Х			Х					X	X
Scandariato (2013) [11]		X		Х	Х						
Beckers (2013) [1]		X	X	Х	X	X					
Dhillon (2011) [4]		X		Х					X	X	
Steven (2010) [13]	X	X		Х			X				
Kamatchi (2016) [6]		X	X	Х	X			Х			

'Anything that has value to an organization'

Problem statement

^{1.} Joel Brenner. "ISO 27001: Risk management and compliance". In: Risk management 54.1 (2007), p. 24. 4 中 5 4 伊 5 4 牙 5 4 牙 5 牙

Plan

Problem statemen

Structuring threat modeling

Proof-of-concept

Conclusion

A novel refinement of "asset"

An asset-based reference model

An asset-based reference model

The B-Tree structure

Asset identification process: major tasks

Problem statement

Building VA library

Extraction of VA from CAPEC³ respecting B-Tree structure

Some rules to extract VAs and their relations basing on CAPEC

- Rule 1: 'contaminate' | 'poison' | 'leverage' | 'manipulate' | 'abuse' | 'exploit' | 'misuse' + VA (Ex. 'Poison web service registry');
- Rule 2: VA + 'manipulation' | 'poisoning' | 'tampering' |
 'alteration' (Ex. 'Web service protocol manipulation');
- Rule 3: VA + 'injection' | 'inclusion' | 'insertion'; VA = 'Untested' + VA + 'Input' (Ex. 'XML injection', VA = 'UntestedXMLInput');
- Rule 4: 'childOf' → 'is' | 'has' (Ex. 'SOAP manipulation' is a 'web services protocol manipulation'; 'XML injection' has 'DTD injection');
- Rule 5 : 'canFollow' → 'depends'.

Problem statement

Plan

Proof-of-concept

Microsoft SDL threat modeling process

WebSphere Application Server Version 7.0:

Microsoft SDL threat modeling tool 4

Integrating our process into Microsoft SDL threat modeling process – DA

II. Integrating our process into Microsoft SDL threat modeling process – VA

Result: 14 threats found

XML Schema Poisoning, XML Ping of the Death, XML Entity Expansion, XML Entity Linking. Spoofing of UDDI/ebXML Messages, XML Routing Detour Attacks, XML External Entities Blowup, XML Attribute Blowup, XML Nested Payloads, XML Oversized Payloads, XML Injection, XML Quadratic Expansion, XML Flood, DTD Injection).

A reusable BASH prototype for security experts

Figure - An excerpt of BASH application result

Problem statement

Plan

Conclusion

Structuring the threat modeling process:

- An asset-based referece model
- An asset identification process
- Extraction of VA to build a VA library
- Integrating with current threat modeling process such as the Microsoft SDL one

Perspectives:

- Evaluating the asset identification process with industrial case studies
- Automating the security knowledge base extraction